DEPARTMENT OF BIOMEDICAL ENGINEERING

Overview
The Sciences & Engineering Center and The Commons building, the University's largest and most cutting-edge facility, which opened in the fall of 2021. The innovative 175,000 square-foot facility is designed to prepare students with a solid background in engineering, life science, chemistry, physics, and mathematics. Students will learn to apply the theories and methods of engineering to innovative technical solutions for medical disease diagnosis, treatment and prevention, and ultimately, to human health. The BME program at WCU provides hands-on experiences that will ensure that graduates will be able to be productive from their first day on the job. It also offers the academic preparation for continuing on to medical, dental, and law schools. The Biomedical Engineering program is housed in The Sciences & Engineering Center and The Commons building, the University’s largest and most cutting-edge facility, which opened in the fall of 2021. The innovative 175,000 square-foot facility offers advanced laboratories, modern academic program space, and state-of-the-art simulation.

Scholarships/Awards
The Lei and Song Li Scholarship for Biomedical Engineering was established in 2019 to help establish and support the development of the biomedical engineering program at West Chester University. The scholarship will be annually awarded on a competitive basis to two rising sophomores and two rising seniors in the BME program. Dr. Li is the founder and chairman of Frontage Holdings, the parent company of Frontage Laboratories, a contract research organization specializing in R&D product development services with operations in both the U.S. and China. Frontage Labs is headquartered in Exton, PA.

The West Pharmaceutical Services Biomedical Engineering Scholarship was established in 2019 when the BME program welcomed their first cohort of students. This scholarship will be awarded to three incoming freshmen to the BME program. The scholarship will be based primarily on merit. West is a leading global manufacturer in the design and production of technologically advanced, high-quality, integrated containment and delivery systems for injectable medicines. They are a trusted partner to the world’s top pharmaceutical and biotechnology companies—working by their side to improve patient health.

Programs

Major

• B.S. in Biomedical Engineering (http://catalog.wcupa.edu/undergraduate/sciences-mathematics/biomedical-engineering/biomedical-engineering-bs/)

Policies

• See undergraduate admissions information. (http://catalog.wcupa.edu/general-information/admissions-enrollment/undergraduate-admissions/)

All undergraduate students are held to the academic policies and procedures outlined in the undergraduate catalog. Students are encouraged to review departmental handbooks for program tips, suggested course sequences, and explanations of procedures. When applicable, additional policies for specific department programs may be listed below.

Admission Policy for the Biomedical Engineering Program

Freshmen Admission Requirements
In addition to West Chester University’s admission requirement, students should have met the following minimum requirements to be accepted into the Biomedical Engineering program:

Students who provide SAT scores:
1. Three years high school mathematics, including Algebra I, Algebra II/trigonometry, geometry and pre-calculus.
2. One year each of high school biology and physics or chemistry.
3. An SAT Math score of 530 or better
4. An SAT Comprehensive (Math + Critical Reading) score of 1050 (or ACT® Composite score of 22) or better.

Students who don’t provide SAT scores:
1. Three years high school mathematics, including Algebra I, Algebra II/trigonometry, geometry and pre-calculus.
2. One year each of high school biology and physics or chemistry.
3. Student should have an average GPA of 3.0 in these classes.
4. Overall high school GPA should be greater than 3.3.

Transfer Student Requirements

Transfer applicants who attended another accredited institution of higher education are subject to the “general requirements for admission of transfers” of West Chester University. In addition, transfer students from two-year and four-year U.S. accredited institutions must have a minimum cumulative GPA of 2.2 out of 4.0 and must have completed with a grade of “C” or better in at least one calculus course and one science course in chemistry, physics, or biology that are approved for transfer credit toward degree requirements in the Biomedical Engineering program.

West Chester students who are enrolled in other majors, including the Exploratory Studies program, are required to meet the following requirements by the end of their first semester for transfer into the Biomedical Engineering program:

1. Completion of MAT 131 (Pre-Calculus) or MAT 161 (Calculus I) with grade of “C” or better;
2. Completion of CHE 103 with grades of “C” or better
3. Earn a cumulative GPA of 2.2 or higher.

Graduation Requirements for the Biomedical Engineering Program

The minimum credits requirement for graduation with a degree of Bachelor of Science in Biomedical Engineering is 126. In addition to the University graduation requirement of a cumulative GPA of 2.0 or above, the Biomedical Engineering students must earn a cumulative Tech GPA of 2.2 or above, and earn a C+ or above in 300-level and above BME courses for graduation. The Tech GPA is calculated based on all engineering courses, mathematics, and science courses attempted at West Chester University.
Faculty
Professor
Zhongping Huang (zhuang2@wcupa.edu) (2018)
Chairperson, Biomedical Engineering
B.S., M.S., Zhejiang University; Ph.D., University of Kentucky

Assistant Professors
Ammar Abdo (aabdo@wcupa.edu) (2022)
B.S., The Hashemite University; M.S., Ph.D., New Jersey Institute of Technology
Jesse Placone (jplacone@wcupa.edu) (2019)
B.S., Ph.D., Johns Hopkins University
Nicole L. Ramo (nramo@wcupa.edu) (2021)
B.S., Kettering University; Ph.D., Colorado State University

Courses

BME

BME 110. Introduction to Biomedical Engineering. 3 Credits.
Introduction to the development of biomedical engineering or bioengineering using fundamental concepts and tools from physics, mechanical, chemical, electrical engineering and biology. Topics may include: biomaterials; biomechanics; bioinstrumentation; biotransport and artificial organs; cell and tissue engineering; systems and signals; biochemical engineering; bioelectric phenomenon; and biomeasurements. Additional topics include developing engineering tools for use in advanced courses and problem-solving skills. Consent: Permission of the Department required to add. Typically offered in Fall.

BME 120. Introduction to Computer Aided Engineering Design. 3 Credits.
This course introduces students to the modern computational tools used for engineering design and analysis. Topics include: the principles of SolidWorks, simple and advanced part modeling approaches, assembly modeling, drawing, configurations/design tables and surface modeling, the applications of SolidWorks in manufacturing processes, mechanical systems, and engineering analysis. Typically offered in Spring.

BME 199. Transfer Credits. 1-10 Credits.
Transfer Credits. Repeatable for Credit.

BME 220. Statics. 3 Credits.
This course covers the application of the principles of mechanics to engineering problems of equilibrium. Topics include resultants, equilibrium, friction, center of gravity, internal forces, analysis of structures, and moment of inertia.
Pre / Co requisites: BME 220 requires a prerequisite of PHY 170 and a prerequisite or corequisite of MAT 162. Typically offered in Fall.

BME 230. Dynamics. 3 Credits.
This course is to present the fundamentals of particle and rigid body dynamics and to apply these fundamentals to the systematic solution of engineering problems. Topics include: work, energy, and momentum; kinetics and kinematics of a particle; planar and three-dimensional kinematics; and dynamics of rigid bodies.
Pre / Co requisites: BME 230 requires a prerequisite of BME 220. Typically offered in Spring.

BME 310. Engineering Thermodynamics. 3 Credits.
This course introduces students to engineering thermodynamics. Topics include: basic concepts of pure substance; system parameters (temperatures, pressure, etc.); first law and second law of thermodynamics; ideal gas; and equation of the state, work, energy, enthalpy, entropy, and thermal refrigeration cycle.
Pre / Co requisites: BME 310 requires prerequisites of PHY 170, CHE 104, and MAT 162. Typically offered in Fall.

BME 315. Biomedical Engineering Laboratory I. 2 Credits.
This course introduces student laboratory techniques and tools in biomedical engineering measurement, as well as provides hands-on laboratory experiences. Students will perform a series of laboratory experiments. A project will be conducted at the end of the semester. Pre / Co requisites: BME 315 requires prerequisites of BME 110 and BIO 265. Typically offered in Fall.

BME 320. Biostatistics for Engineers. 3 Credits.
This course introduces students to biostatistics, covering the basic methods utilized to statistically analyze and present data using R programming language. Students will apply statistical analysis on datasets derived from biomedical engineering studies. Topics include random variables and probability distributions, estimation and confidence intervals, hypothesis testing and statistical inference, one-way ANOVA, two-way ANOVA, one-way repeated-measures ANOVA, and non-parametric tests. Pre / Co requisites: BME 320 requires prerequisites of BME 110 and BIO 110. Typically offered in Fall.

BME 325. Biomedical Engineering Laboratory II. 2 Credits.
This course is the continuation of BME 315. Students will perform a series of laboratory experiments. A project will be conducted at the end of the semester. Pre / Co requisites: BME 325 requires prerequisites of BME 110, BME 315, and BIO 265. Typically offered in Spring.

BME 335. Biomaterials. 3 Credits.
This course provides an introduction to the interactions between cells and the surfaces of biomaterials. Topics include: materials commonly used in biomedical applications, chemical structure of biomaterials, physical and mechanical properties of biomaterials, the biocompatibility of those materials with the biological environment, and the immune response to biomaterials.
Pre / Co requisites: BME 335 requires prerequisites of BIO 265 and CHE 104. Typically offered in Fall.

BME 345. Biotransport Phenomena. 4 Credits.
This course provides the fundamental biomedical applications of fluid mechanics, heat, and mass transfer. Topics include: the principles and applications of biotransport fundamentals, fluid mechanics, macroscopic biotransport, 1-D steady and unsteady state transport, and general multidimensional microscopic transport.
Pre / Co requisites: BME 345 requires prerequisites of BIO 265, BME 310, and MAT 315. Typically offered in Spring.

BME 355. Biomedical Instrumentation. 3 Credits.
This course is to study the fundamentals of instrumentation in biomedical fields. Topics include: various types of medical instruments; basic analog and digital electronics; data acquisition signal processing; and applications of instrumentation in diagnoses, medical imaging, and laboratory. Regulation and medical safety will be discussed.
Pre / Co requisites: BME 355 requires prerequisites of BIO 265, PHY 180, and MAT 315. Typically offered in Spring.

BME 365. Biomechanics for Engineers. 3 Credits.
In this course, students acquire the basic tools used to analyze the human body as a mechanical system with examples from the tissue level to the whole-body level. Relevant concepts introduced in previous mechanics courses (e.g., BME 230) will be advanced and applied in BME-specific contexts. Topics include the following: joint kinematics and kinetics; linked segment modeling; tissue stresses and strains; and biomechanics related to injury/disease as well as treatments. Emphasis will be placed on how to effectively find, read, interpret, and synthesize the information presented in scholarly research articles to write a literature review and propose a research study.
BME 410. Senior Design I. 3 Credits.
This is a capstone design course. This course provides students the opportunity to work with real-world, open-ended, and/or interdisciplinary challenges proposed by faculty or industrial project sponsors. Students work as a small team supervised by a faculty member and/or industry advisor. Students team learn and apply principles of engineering, biology, chemistry, physics, and mathematics to solve biomedical engineering problems through the consideration of engineering solutions in global, economic, environmental, and societal contexts. The design process involves: defining functional requirements, conceptualization, design, development, construction, physical prototyping, measurement, analysis, and conclusion. An initial proposal and progress report are required at the beginning of the course as well as in the middle of these two semesters, respectively. A final report and post/oral presentations are required at the end of the second semester.
Pre / Co requisites: BME 410 requires prerequisites of BME 325, BME 345, BME 355, BME 365 or permission of the instructor.
Gen Ed Attribute: Speaking Emphasis.
Typically offered in Fall.

BME 420. Senior Design II. 3 Credits.
This is the continuation of BME 410. This course provides students the opportunity to work on real-world, open-ended, and possibly interdisciplinary challenges proposed by faculty or industrial project sponsors. Students work as a small team supervised by a faculty member and/or industry advisor. Student teams learn and apply principles of engineering, biology, chemistry, physics, and mathematics to solve biomedical engineering problems through the consideration of engineering solutions in global, economic, environmental, and societal contexts. The design process involves: defining functional requirements, conceptualization, design, development, construction, physical prototyping, measurement, analysis, and conclusion. An initial proposal and progress reports are required at the beginning of BME 410 and in the middle of the two semesters, respectively. A final report and poster and oral presentations are required at the end of BME 420.
Pre / Co requisites: BME 420 requires a prerequisite of BME 410 or permission of the instructor.

Typically offered in Spring.

BME 450. Regulatory and GMP. 3 Credits.
This course provides students knowledge of the processes in the manufacture or quality control of biotechnology products with current Good Manufacturing Practices (cGMP) guidelines and regulations. Topics include: introduction to the FDA and other regulatory agencies, current Good Manufacturing Practices (cGMP), process validation requirements and product life cycle quality management, and the application of the regulations to case studies.
Pre / Co requisites: BME 450 requires a prerequisite of BME 325 or permission of the instructor.

Typically offered in Spring.

BME 455. Bioprocess Engineering. 3 Credits.
This course covers the fundamental principles and applications of bioprocessing. Engineering principles applied to processes involving recombinant protein production are introduced. Emphasis is placed on the engineering aspects of quantitative bioprocess analysis. Topics include bioprocessing, recombinant DNA technology, material balances, mass transfer, bioreactions, and bioreactor engineering.
Pre / Co requisites: BME 455 requires a prerequisite of BME 345.

Typically offered in Fall.

BME 460. Biomedical Device Design. 3 Credits.
This is a required project-based learning course for Biomedical Engineering (BME) majors. It introduces the engineering design process and related concepts, tools, and methodologies in the context of biomedical device design. Students will work in teams to redesign, modify, fabricate, and validate a current medical device. Topics include the engineering design process, rapid prototyping using 3D printing, finite-element analysis (FEA), and the use of standards in design evaluation (e.g., ASTM testing standards).
Pre / Co requisites: BME 460 requires prerequisites of BME 120 and BME 365.

Typically offered in Fall.

BME 465. Cell and Tissue Engineering. 3 Credits.
This course provides insight into current topics in cell and tissue engineering. Lectures will be supplemented with discussions of current and seminal research topics. Topics include: stem cells/induced pluripotent stem cells and their use in tissue engineering applications, biomaterials and their use in tissue engineering, and bioreactors for modeling physiologically relevant systems.
Pre / Co requisites: BME 465 requires a prerequisite of BME 335 or permission of the instructor.

Typically offered in Spring.

BME 470. Artificial Organs and Cryobiology Fundamentals. 3 Credits.
This course will introduce students to the multidisciplinary knowledge (in thermodynamics, heat and mass transfer, physical chemistry, biology) and methodologies which are required to study cryobiology and artificial organs. It will also provide cryobiology fundamentals, including a cell's response to low temperature, osmotic behavior, and membrane transport at low temperature and activation energy, mechanisms of cryoprotection, and the fundamentals of kidneys and hemodialysis, including type of kidney diseases, different treatments, and kinetic modeling in hemodialysis.
Pre / Co requisites: BME 470 requires a prerequisite of BME 345 or permission of the instructor.

Typically offered in Spring.